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Quasicrystals (QC) with two-dimensional quasiperiodic and one-dimensional

periodic structure are considered. Their symmetry can be described by

embedding the three-dimensional physical space VE in a five-dimensional

superspace V, which is the direct sum of VE and a two-dimensional internal

space VI. A displacement v in V can be written as v = u + w, where u 2VE and w 2

VI. If the QC has a point group P in VE that is crystallographic, it is assumed that

w and a vector u0 2 VE lying in the plane in which the crystal is quasiperiodic

transform under equivalent representations of P, inequivalent ones if the point

group is 5-, 8-, 10- or 12-gonal. From the Neumann principle follow restrictions

on the form of the phonon, phason and phonon–phason coupling contributions

to the elastic stiffness matrix that can be determined by combining the

restrictions obtained for a set of elements generating the point group of interest.

For the phonon part, the restrictions obtained for the generating elements do

not depend on the system to which the point group belongs. This remains true

for the phason and coupling parts in the case of crystallographic point groups

but, in general, breaks down for the non-crystallographic ones. The form of the

symmetric 12 � 12 matrix giving the phonon, phason and phonon–phason

coupling contributions to the elastic stiffness is presented in graphic notation.

1. Introduction

In the following, so-called two-dimensional quasicrystals will

be considered (Hu et al., 1996). They are periodic in one

direction and quasiperiodic in the plane perpendicular to it.

Five integers are needed to index their diffraction patterns.

The symmetry of a quasicrystal (QC) can be described by

embedding physical space in an n-dimensional (nD) super-

space. In our case, the three-dimensional physical space VE is

embedded in a five-dimensional space V, which is the direct

sum of VE and a two-dimensional internal space VI (Bak, 1985;

Hu et al., 2000).

A displacement v in V can be written as v = u + w, where u 2

VE and w 2 VI. The gradient of u describes the change in the

shape and volume of the unit cell, the gradient of w describes

local rearrangements of the unit cells. u is referred to as the

phonon part of v, w as the phason part. The elastic energy

density F consists of three terms:

F ¼ Fu
þ Fw

þ Fuw
¼ 1

2 CijklEijEkl þ
1
2 KijklWijWkl þ RijklEijWkl;

ð1Þ

where Eij is the phonon strain,

Eij ¼
1
2 ð@ui=@xj þ @uj=@xiÞ; i; j ¼ 1; 2; 3; ð2Þ

and Wij is the phason strain,

Wij ¼ @wi=@xj; i ¼ 1; 2; j ¼ 1; 2; 3: ð3Þ

Equation (1) shows that the energy density contributions F u,

F w and F uw are due to the phonon strain field Eij, the phason

strain field Wij and to phonon–phason coupling, respectively

(Ding et al., 1993).

The point group P in VE of a two-dimensional QC is either

non-cubic crystallographic or 5-, 8-, 10- or 12-gonal (Hu et al.,

1996). If P contains an N-fold rotation or rotation–inversion

axis with N > 2, this axis will be in the direction in which the

crystal is periodic. Conventionally, a Cartesian coordinate

system is chosen with the third axis in this direction.

According to the Neumann principle, the phonon, phason and

coupling parts, Cijkl, Kijkl and Rijkl, of the elastic stiffness must

be invariant under the elements of the point group P. Because

F is invariant under orthogonal transformations, the trans-

formation behaviour of C, K and R is determined by the

transformation behaviour of Eij and Wij. These, in turn, are

given by the transformation behaviour of u, x and w according

to equations (2) and (3). Whereas u and x transform as vectors

in VE, it is assumed that w and a vector u0 2 VE lying in the

plane in which the crystal is quasiperiodic transform under

equivalent representations of P if P is crystallographic,

inequivalent ones if P is 5-, 8-, 10- or 12-gonal (Hu et al., 1996).

The elastic stiffness being invariant under the inversion �11, the

restrictions on its form following from the Neumann principle



will depend only on the Laue class of the point group.

Therefore, the restrictions can be found by determining them

for the pure rotation group in each Laue class.

Because Eij is symmetric in i and j (i.e. Eij = Eji) according to

equation (2), Eij has only six independent components, which

are conventionally arranged as

E1 ¼ E11;E2 ¼ E22;E3 ¼ E33;E4 ¼ 2E23;

E5 ¼ 2E31;E6 ¼ 2E12: ð4Þ

Wij, i = 1, 2, j = 1, 2, 3, also has six independent components,

which will be arranged in the order

W1 ¼ W11;W2 ¼ W22;W3 ¼ W12;W4 ¼ W21;

W5 ¼ W13;W6 ¼ W23: ð5Þ

Equation (1) can then be written as

F ¼ 1
2 C��E�E� þ

1
2 K��W�W� þ R��E�W�; ð6Þ

where Greek indices run from 1 to 6. The matrices C�� and

K�� are chosen symmetric in � and � because an antisym-

metric part does not contribute to F according to (6).

Following Hu et al. (2000), we define the phonon and

phason parts of the elastic stress by

Tij ¼ @F=@Eij and Hkl ¼ @F=@Wkl: ð7Þ

Notice that i, j, l = 1, 2, 3 whereas k = 1, 2; Tij is symmetric in i

and j. Inserting (1) into (7), we obtain the generalized Hooke

law

Tij ¼ CijklEkl þ RijklWkl;

Hij ¼ RklijEkl þ KijklWkl:
ð8Þ

Defining

T1 ¼ T11;T2 ¼ T22;T3 ¼ T33;T4 ¼ T23;T5 ¼ T31;T6 ¼ T12

ð9Þ

and

H1 ¼ H11;H2 ¼ H22;H3 ¼ H12;H4 ¼ H21;H5 ¼ H13;H6 ¼ H23;

ð10Þ

Hooke’s law can be written as

T� ¼ C��E� þ R��W�;

H� ¼ R��E� þ K��W�;
ð11Þ

or, in matrix form,

T

H

� �
¼

C R

RT K

� �
E

W

� �
; ð12Þ

where the 12 � 12 matrix is symmetric.

The form of the parts C, R and K of this matrix were first

studied for icosahedral quasicrystals by Levine et al. (1985)

and by Bak (1985). They found that the numbers of inde-

pendent elastic constants determining C, K and R are nC = 2,

nK = 2 and nR = 1, respectively. For the 5-, 8-, 10- and 12-gonal

Laue classes, the form of C, R and K has been given by Hu et

al. (2000) in their Table 4. Notice that they arranged the six

phason components in a different order.

Earlier, Hu et al. (1996) had determined for each non-cubic

crystallographic or 5-, 8-, 10- or 12-gonal Laue class the

quadratic expressions in the Cartesian components Eij, the

quadratic expressions in Wij, and the expressions linear in both

Eij and Wij that are invariant under the operations of the

rotation group contained in the Laue class. In principle, these

invariants determine the restrictions on the form of C, K and

R, respectively. Unfortunately, the list of invariants given in
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Table 1
Laue classes, corresponding point groups, numbers of independent elastic constants of two-dimensional quasicrystals.

Point groups in the Laue class Independent components

System

Orientation
of the rotation
group

Rotation group
= symbol of
Laue class

Centro-
symmetric
group nC nK nR Sum

Triclinic 1 �11 21 21 36 78
Monoclinic (||x3) 2||x3 112 11m 112/m 13 13 20 46
Monoclinic (?x3) 2||x1 211 m11 2/m11 13 12 18 43

2||x2 121 1m1 12/m1
Orthorhombic 2||x1, 2||x2 222 (2mm, m2m, mm2) mmm 9 8 10 27
Tetragonal 4||x3 4 �44 4/m 7 7 10 24

4||x3, 2||x1 422 4mm, (�44m2, �442m) 4/mmm 6 5 5 16
Trigonal 3||x3 3 �33 7 7 12 26

3||x3, 2||x1 321 3m1 �33m1 6 5 6 17
3||x3, 2||x2 312 31m �331m

Hexagonal 6||x3 6 �66 6/m 5 5 8 18
6||x3, 2||x1 622 6mm, (�66m2, �662m) 6/mmm 5 4 4 13

Pentagonal 5||x3 5 �55 5 5 6 16
5||x3, 2||x1 521 5m1 �55m1 5 4 3 12
5||x3, 2||x2 512 51m �551m

Decagonal 10||x3 10 10 10/m 5 3 2 10
10||x3, 2||x1 10 2 2 10mm, (10m2, 102m) 10/mmm 5 3 1 9

Octagonal 8||x3 8 �88 8/m 5 5 2 12
8||x3, 2||x1 822 8mm, (�88m2, �882m) 8/mmm 5 4 1 10

Dodecagonal 12||x3 12 12 12/m 5 5 0 10
12||x3, 2||x1 12 2 2 12mm, (12m2, 122m) 12/mmm 5 4 0 9



Table 2 of Hu et al. (1996) contains a number of errors. For

convenience, the forms of C, K and R should be given directly,

as was done by Hu et al. (2000) for the 5-, 8-, 10- and 12-gonal

Laue classes. In x2, the analogous results will be presented for

the non-cubic crystallographic Laue classes. Table 1 lists these

and the 5-, 8-, 10- or 12-gonal Laue classes together with the

numbers nC, nK, nR, as determined by Hu et al. (1996). The

monoclinic Laue class as well as the trigonal and pentagonal

Laue classes with more than one symmetry direction are given

in different orientations, expressed by the Hermann–Mauguin

symbols of the corresponding point groups. The conventions

underlying the Hermann–Mauguin symbol define the orien-

tation of the point group, as recalled in the second column of

Table 1. Notice that nK and nR depend on whether the

monoclinic axis lies in the periodic direction or the quasi-

periodic plane. The symbol of the rotation group will also be

used to denote the corresponding Laue class.

2. The elastic matrix for two-dimensional quasicrystals
with crystallographic point group

Consider as a simple example the Laue class containing the

point group 211, i.e. the point group generated by a 180�

rotation with axis along x1. This operation leaves the first

component of a vector invariant and changes the sign of the

second and third components. u and x transform as vectors in

three-dimensional space and w as a vector in the x1x2 plane.

For any stress value, the elastic energy density F remains

invariant under the point-group operations of the QC. It then

follows from (1) that all stiffness components with an odd

number of indices 1 will vanish because for these an odd

number among the four indices is either 2 or 3. The 12 � 12

matrix then has the form given in Fig. 1.

The notation of Nye (1985) is used in Fig. 1: points denote

vanishing components and filled circles components whose

values are not restricted by Neumann’s law. Below the main

diagonal, the numbers of independent components are given:

nC = 13, nR = 18, nK = 12. The elastic stiffness matrix being

symmetric, the value of each component below the main

diagonal is equal to the value of the corresponding component

above.

For Laue class 1, there are no restrictions, the corre-

sponding Nye diagram contains only filled circles, nC = 21, nR =

36, nK = 21.

Similarly to the Laue class 211, it follows from (1) that for

121 all stiffness components with an odd number of indices 2

will vanish, and that for 112 all stiffness components with an

odd number of indices 3 will vanish, leading to the Nye

diagrams given in Figs. 2 and 3.
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Figure 1
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
Laue class 211.

Figure 3
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
Laue class 112.

Figure 2
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
Laue class 121.



Next we consider the Laue class containing the point group

222, i.e. the point group generated by two 180� rotations, with

axes along x1 and x2, respectively. The matrix simultaneously

satisfies the restrictions 211 and 121 (as well as 112). The result

is shown in Fig. 4.

We now consider the Laue class containing the point group

4, i.e. the point group generated by a 90� rotation with axis

along x3. It maps the vector components 1!2, 2!�1, 3!3,

i.e. the components of E and W as follows

R�� then transforms as

A similar procedure can be applied to C and K. The ensuing

necessary and sufficient restrictions for invariance of R, C and

K are given in Fig. 5.

The point group 422 is generated by a 90� rotation about x3

and a 180� rotation about x1. The matrix for Laue class 422

simultaneously satisfies the restrictions 4 and 211. The result is

shown in Fig. 5.

We now consider the Laue class containing point group 3,

i.e. the point group generated by a 120� rotation with axis

along x3. It maps the vector components 1! c1 + s2, 2!

�s1 + c2, 3!3, where c = cos 120� = �1
2, s = sin 120� = 1

2

p
3.

The result is given in Fig. 6.

The point group 321 is generated by a 120� rotation about x3

and a 180� rotation about x1. The matrix for Laue class 321

simultaneously satisfies the restrictions for 3 and for 211.

Similarly, the matrix for Laue class 312 satisfies the restrictions

for 3 and 121. The matrix for Laue class 6 satisfies the

restrictions for 3 and 112; the matrix for Laue class 622

satisfies the restrictions for 6 and 211. All these result are

shown in Fig. 6. Notice that the form of the matrix for Laue

class 6 is a special case of the form for Laue class 4; an

analogous result holds for 622 and 422.

research papers

462 Hans Grimmer � Elastic properties of two-dimensional quasicrystals Acta Cryst. (2008). A64, 459–464

Figure 4
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
Laue class 222.

Figure 5
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
the Laue classes 4 and 422. The black components are allowed in Laue
class 422, the black and red components in Laue class 4.

Figure 6
Form of the elastic stiffness matrix for two-dimensional quasicrystals in
the trigonal and hexagonal Laue classes. x: C66 = 1

2(C11�C12); y: R61 =
�R62 = �1

2(R13 + R14); z: R63 = R64 = 1
2(R11 � R12); w: K34 = K11 � K33 �

K12. The black components are allowed in Laue class 622, the black and
blue ones in 6, the black and red ones in 321, the black and green ones in
312, the black, blue, red and green ones in 3.

Eij 11!22 22!11 33!33 23!�13
= �31

31!32
= 23

12!�21
= �12

E� 1!2 2!1 3!3 4!�5 5!4 6!�6
Wij 11!22 22!11 12!�21 21!�12 13!23 23!�13
W� 1!2 2!1 3!�4 4!�3 5!6 6!�5

11 12 13 14 15 16 ! 22 21 �24 �23 26 �25
21 22 23 24 25 26 12 11 �14 �13 16 �15
31 32 33 34 35 36 32 31 �34 �33 36 �35
41 42 43 44 45 46 �52 �51 54 53 �56 55
51 52 53 54 55 56 42 41 �44 �43 46 -45
61 62 63 64 65 66 �62 �61 64 63 �66 65



3. The elastic matrix for two-dimensional quasicrystals
with non-crystallographic point group

3.1. General considerations

Under a rotation about the z axis by an angle 2�/N, the

phonon part u of a displacement v transforms with the

transformation matrix U and the phason part w with a trans-

formation matrix V,

U ¼

cos 2�=N � sin 2�=N 0

sin 2�=N cos 2�=N 0

0 0 1

0
B@

1
CA;

V ¼
cos 2k�=N � sin 2k�=N

sin 2k�=N cos 2k�=N

� �
;

ð13Þ

where k = 1 in the crystallographic cases, for which N = 2, 3, 4

or 6. Assuming k = 3 for N = 5, 8 or 10 and k = 5 for N = 12, the

results presented in Table 4(b) of Hu et al. (2000) are obtained.

These values of k are compatible with the perpendicular

representations given in Table 1.10.5.1 of Janssen (2003) for

the 5-, 8-, 10- and 12-gonal point groups containing only

rotations, and they guarantee that the sum of the traces of the

two matrices, Tr(U) + Tr(V), is an integer.

Notice that V differs for a rotation about the z axis by an

angle �/2 according to whether the QC has octagonal or

dodecagonal symmetry because the angle appearing in the

trigonometric functions is 3�/2 � ��/2 in the first case and

5�/2 � �/2 in the second, in which V is the same as for

tetragonal symmetry. Also, the angle appearing for dodecag-

onal symmetry in the trigonometric functions of V is 5�/3 �

��/3 for a rotation by �/3 and 10�/3��2�/3 for a rotation by

2�/3, i.e. it has opposite sign compared with hexagonal or

trigonal symmetry. For rotations by � about the z axis, V does

not depend on the point group because the angle � � ��.

Owing to the sign differences in the angles, we cannot expect

in every case that the forms of the phason matrix K and of the

coupling matrix R are for 8 special cases of the forms for 4, and

for 12 special cases of the forms for 6 (and 3). However, the

forms for 8, 10 and 12 must be special cases of the forms for

112, the forms for 12 even special cases of the forms for 4.

All three parts, C, K and R, of the elastic stiffness matrix

simultaneously satisfy for 521 the restrictions for 5 and 211, for

512 the restrictions for 5 and 121, for 822 the restrictions for 8

and 211, for 1022 the restrictions for 10 and 211, and for 1222

the restrictions for 12 and 211.

3.2. The phason part K

Let me indicate how it can be shown that the component in

red in Fig. 7 has the form given there. Assume that only one of

the independent components is different from 0 and that

K1123 = d. Fig. 7 then claims K1123 = K2223 = �K1213 = K2113 = d

and, because K is symmetric, K2311 = K2322 = �K1312 = K1321 =

d. If we introduce the abbreviations c = cos 2�/5, s = sin 2�/5,

C = cos 6�/5, S = sin 6�/5, a rotation by 2�/5 about the z axis

will give for K01123 according to equation (13):
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Figure 8
Form of the phason part K of the elastic stiffness matrix for two-
dimensional quasicrystals in the octagonal and dodecagonal Laue classes.
The black components are allowed in Laue classes 822 and 12 2 2, the
black and red components in Laue classes 8 and 12. x: K34 =�K11 + K33�

K12.

Figure 7
Form of the phason part K of the elastic stiffness matrix for two-
dimensional quasicrystals in the pentagonal and decagonal Laue classes.
The black components are allowed in Laue classes 10 and 10 22, the black
and red components in Laue class 521, the black and green components in
Laue class 512, the black, red and green components in Laue class 5. The
number nK of independent components is 3 for Laue classes 10 and 10 2 2,
4 for Laue classes 521 and 512, 5 for Laue class 5.

Figure 9
Form of the coupling part R of the elastic stiffness matrix for two-
dimensional quasicrystals. The black component is allowed in Laue
classes 822 and 10 2 2, the black and blue components are allowed in Laue
classes 8 and 10, the black and red components are allowed in Laue class
521, the black and green components in Laue class 512, the black, red,
green and blue components in Laue class 5. The number nR of
independent components is 1 for Laue classes 822 and 10 22, 2 for Laue
classes 8 and 10, 3 for Laue classes 521 and 512, 6 for Laue class 5.



K01123 ¼ dðC2cþ 2SCs� S2cÞ ¼ d:

Notice that there are contributions only from the four terms

where the index 3 appears in the fourth position. Similarly, one

finds K02223 = �K01213 = K02113 = d, i.e. invariance under the

rotation 2�/5, which generates the point group 5.

Figs. 8 and 5 show that the form for Laue classes 8 and 12 is

a special case of the form for 4, the form for 822 and 1222 a

special case of the form for 422; in the cases of 12 and 1222,

this had to be expected, as shown in x3.1. Notice that, although

3 is an oriented subgroup of 12 and 1222, the forms for 12 and

1222 are not special cases of the form for 3.

Notice that the third and fourth entries in the last line in

Table 4(d) of Hu et al. (2000) are interchanged, destroying the

symmetry of the matrix K.

3.3. The coupling part R

Although 4 is an oriented subgroup of 8 and 822, the forms

of R for 8 and 822, shown in Fig. 9, are not special cases of the

form for 4. The coupling part R vanishes for the Laue classes

12 and 1222. It follows that the requirement that they be

special cases of the forms for 4 and 422, respectively, is satis-

fied in a trivial manner.

4. Discussion

According to Hu et al. (1996), it has been assumed in all cases

with crystallographic point group that w and a vector u 2 VE

lying in the plane in which the crystal is quasiperiodic trans-

form under equivalent representations. The restrictions on the

form of the matrix following e.g. from invariance under a 180�

rotation then depend only on the axis of the rotation, not on

the point group of the QC.

The phonon matrix C does not depend on the transforma-

tion properties of w. It has the same form for the Laue classes

5, 8, 10 and 12 as for the Laue class 6, according to the theorem

of Hermann (1934) which states that for all tensors of rank n a

symmetry rotation of order >n leads to the same restrictions as

a symmetry rotation of infinite order. The matrix C has the

same form for 6 and 622 and therefore also for 521, 512, 822,

1022 and 1222.

If the two-dimensional QC has a 5-, 8-, 10- or 12-gonal point

group, w will transform according to the matrix V with k 6¼ 1

[see equation (13)], not as the component of u in the xy plane.

Once the forms of K and R have been determined for the

point groups 5, 8, 10 and 12, they can be obtained as follows

for the remaining 5-, 8-, 10- or 12-gonal Laue classes. For 521,

the phason matrix K simultaneously satisfies the restrictions

following from the point-group symmetry 5||z and 2||x, i.e.

K[521] = K[5] \ K[211]; K[211] is given in the lower part of

our Fig. 1. Similarly, K[512] = K[5] \ K[121], K[N22] = K[N] \

K[211], where N = 8, 10, 12 and where K[121] is the matrix

given in the lower part of our Fig. 2. Analogous results hold for

the phonon–phason mixing matrices R: R[521] = R[5] \

R[211], R[512] = R[5] \ R[121], R[N22] = R[N] \ R[211],

where R[211] and R[121] are the matrices given in the upper

right parts of our Figs. 1 and 2, respectively.

From Figs. 7–9, it follows that K[5] 6¼ K[10] 6¼ K[8] = K[12]

and R[5] 6¼ R[10] = R[8] 6¼ R[12], showing that the theorem of

Hermann (1934) holds only for the phonon part, where C[5] =

C[10] = C[8] = C[12] = C[6].

A similar situation holds for the matrices describing the

piezoelectric effect, as shown by the results of Hu et al. (1997),

where the phason part d(2) of the piezoelectric matrix has the

same form for point groups 4 and 6 as well as for point groups
�88 and 12. However, the form for �88 is not the same as, or a

special case of, the form for 4 although 4 is a subgroup of �88 and

6 a subgroup of 12.

The author wishes to thank T. Janssen for helpful discus-

sions.
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